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This paper studies the optical 1-soliton in the hollow-core photonic crystal fibers in the presence of space-dependent inter-
modal dispersion, detuning and fiber loss. Two integration tools that are the Hirota's bilinear method and ansatz method are 
used. We report the explicit optical bright 1-solitons. 
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1. Introduction 
 

The concept of photonic crystal fibers (PCFs) was 

first introduced based on the theory of photonic crystal 

bandgap by Russell in 1992 [1] and then attracted much 

more attention [3-5]. PCFs have many unusual optical 

properties, including endless single mode characteristic, 

controllable dispersion properties and high 

birefringence, which make them be widely applied in the 

area of telecommunications and electromagnetics. 

According to the different structure of the fiber core, 

PCFs are classified as solid core photonic crystal fiber 

(SC-PCFs) and hollow-core photonic crystal fibers (HC-

PCFs).  

HC-PCFs possess excellent fundamental mode 

transmission characteristics and very low loss,   which 

can greatly enhance the nonlinear interactions between 

light pulses and matter. By filling different gases or 

liquids in fiber core, many optical nonlinear effects, 

including the electromagnetically-induced transparency 

(EIT), saturated absorption and soliton self-frequency 

shift, had been studied in recent years [6-8].  

The key idea of this paper is to study the nonlinear 

dynamics of HC-PCFs. In the presence of space-

dependent inter-modal dispersion (IMD), detuning and 

fiber loss, the propagation of optical solitons through 

HC-PCFs is ruled by the following nonlinear 

Schrödinger equation:  
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where the dependent variable ),( txu  is a complex wave 

function that represents the normalized electric-field 

envelope, while x  and t  are the independent variables that 

represent the distance along the HC-PCFs and time in a co-

moving frame respectively. Here )(xa , )(xb , )(x , )(xk , 

and )(x  that are space modulated that represent the 

parameters of group velocity dispersion (GVD), Kerr law 

nonlinearity, IMD, detuning and fiber loss, and finally )(x  

is due to the Kerr nonlinearity of the gas.      

Very recently, the optical solitons and breathers in 

homogeneous HC-PCFs had been studied [9-11]. However, 

to our knowledge, the optical solitons in inhomogeneous 

HC-PCFs have not reported in the existing papers. Hence the 

main work described in this paper is to construct exact 

solitons to Eq. (1), which will be investigated analytically by 

employing the Hirota’s direct method and ansatz method. As 

a consequence, the explicit optical bright 1-soliton solutions 

to Eq. (1) are obtained.  

 

 

2. Hirota's bilinear method 
 

In this section, we will use the Hirota's bilinear method 

to get exact soliton solutions to Eq. (1).   

 

2.1  Hirota's Bilinear forms to Eq. (1) 

 

In order to solve Eq. (1), the starting point is the 

hypothesis [9-11]  
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where ),( txf  is the real function while ),( txg  is the 

complex function.  
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Introducing the Hirota's bilinear operators xD  and 

tD , which are defined as [12] 
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From Eqs. (2) and (3), Eq. (1) can be rewritten as 
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To begin with, balancing the parameter of 3f  to 

zero gives 
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Then substituting Eq. (5) into Eq. (4) yields 
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We use the integration  


t
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[9]. Finally, the Hirota's bilinear forms to Eq. (1) are got 

that are given by Eqs. (5) and (6). 

 
 

2.2 Analytical soliton solutions to Eq. (1) 

 

The starting hypotheses are that ),( txf  and ),( txg  

have the generalized power series expansions in the 

forms 
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where   is the formal expansion coefficient.  

Substituting Eqs (7) and (8) into the Hirota's bilinear 

forms (5) and (6), and then using the balancing principle 

gives a set of relations for ),(2 txf n  and ),( txgn . 

Finally the analytical solutions to Eq. (1) can be got by 

solving those relations above.   

In this work, we will focus on the 1-soliton. In this case, 

),( txg  takes the form [13] 
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where 11a  and 12a  are the real functions while 11b , 12b , 11k  

and 12k  are the real constants.   

Substituting Eqs. (7) and (9) into the Hirota's bilinear 

form (5) yields 
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with 0）,(2 txf n  (n = 2, 3, 4,…).  

Then, substituting Eqs. (7), (9) and (10) into the Hirota's 

bilinear form (6) yields 
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Solving Eqs. (11)-(13), one obtains 
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Finally, without loss of generality, we take 1 , then 

the analytical bright soliton solution to Eq. (1) is given by 
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where )(11 xa  and )(12 xa  are given by Eqs. (14) and (15), 

while the constraint condition for analytical solution to exist 

is given by Eq. (16).  

 

 

3. Ansatz method 
 

In this section, we will use the ansatz method [14-20] to 

get exact bright soliton solution to Eq. (1).   

For bright soliton, the starting point is the hypothesis 
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Substituting this hypothesis into Eq. (1) yields 
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Separating the real and imaginary parts, and then 

using the homogeneous balance principle, one obtains 
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where )(x  is an auxiliary function.  

Solving Eqs. (22) and (23), one obtains 
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Finally, the analytical bright soliton solution to Eq. 

(1) is obtained that is given by Eq. (18), )(11 xa  and 

)(12 xa  in which are given by Eqs. (24) and (25), while 

the constraint condition for analytical solution to exist 

are given by Eqs. (20) and (21).  

 

 

4. Conclusion 
 

This paper studied optical solitons, which are 

modeled by nonlinear Schrodinger’s equation, in 

presence of inter-modal dispersion, detuning and 

attenuation which are all considered with spatially dependent 

coefficients. Hirota’s bilinear method and ansatz approach 

revealed bright 1-soliton solution which comes with 

constraint conditions for its existence. 
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