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Optical solitons in photonic crystal fibers with spatially
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This paper studies the optical 1-soliton in the hollow-core photonic crystal fibers in the presence of space-dependent inter-
modal dispersion, detuning and fiber loss. Two integration tools that are the Hirota's bilinear method and ansatz method are

used. We report the explicit optical bright 1-solitons.
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1. Introduction

The concept of photonic crystal fibers (PCFs) was
first introduced based on the theory of photonic crystal
bandgap by Russell in 1992 [1] and then attracted much
more attention [3-5]. PCFs have many unusual optical
properties, including endless single mode characteristic,
controllable  dispersion  properties and  high
birefringence, which make them be widely applied in the
area of telecommunications and electromagnetics.
According to the different structure of the fiber core,
PCFs are classified as solid core photonic crystal fiber
(SC-PCFs) and hollow-core photonic crystal fibers (HC-
PCFs).

HC-PCFs possess excellent fundamental mode
transmission characteristics and very low loss, which
can greatly enhance the nonlinear interactions between
light pulses and matter. By filling different gases or
liquids in fiber core, many optical nonlinear effects,
including the electromagnetically-induced transparency
(EIT), saturated absorption and soliton self-frequency
shift, had been studied in recent years [6-8].

The key idea of this paper is to study the nonlinear
dynamics of HC-PCFs. In the presence of space-
dependent inter-modal dispersion (IMD), detuning and
fiber loss, the propagation of optical solitons through

HC-PCFs is ruled by the following nonlinear
Schrédinger equation:
iu, +a(x)u, + b(x)\u\zu —iA(x)u, — O

— uOOu, Ju(x, 2)| dr — k2 (X)u +iy(x)u =0

where the dependent variable u(x,t) is a complex wave
function that represents the normalized electric-field

envelope, while X and t are the independent variables that
represent the distance along the HC-PCFs and time in a co-
moving frame respectively. Here a(x), b(x), A(x), k(x),
and y(x) that are space modulated that represent the
parameters of group velocity dispersion (GVD), Kerr law
nonlinearity, IMD, detuning and fiber loss, and finally 2z(X)
is due to the Kerr nonlinearity of the gas.

Very recently, the optical solitons and breathers in
homogeneous HC-PCFs had been studied [9-11]. However,
to our knowledge, the optical solitons in inhomogeneous
HC-PCFs have not reported in the existing papers. Hence the
main work described in this paper is to construct exact
solitons to Eq. (1), which will be investigated analytically by
employing the Hirota’s direct method and ansatz method. As
a consequence, the explicit optical bright 1-soliton solutions
to Eq. (1) are obtained.

2. Hirota's bilinear method

In this section, we will use the Hirota's bilinear method
to get exact soliton solutions to Eq. (1).

2.1 Hirota's Bilinear forms to Eq. (1)

In order to solve Eg. (1), the starting point is the
hypothesis [9-11]

X, t
9y @
f(x,t)

where f(x,t) is the real function while g(x,t) is the
complex function.

u(x,t) =
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Introducing the Hirota's bilinear operators D, and
D, , which are defined as [12]

DYD{(g- f)=
=(0,-0,)"(0,-0.)"[9(x1)f (é,r)]\g,:
From Egs. (2) and (3), Eq. (1) can be rewritten as

®)
t

t(g f)_
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D (g-f
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+b(x)gfg “iA(x )D(g D_ )

00 21,99 dr -k 0 vy 3 -
f f f f
To begin with, balancing the parameter of f > to
Zero gives
b(x)

Df(f-f)=——= a0 99" ()

Then substituting Eq. (5) into Eq. (4) yields

iD,(g- f)+a()DZ(g- f)-iA(x)Dy(g- f)-

_2a(u() f

) (6)
o0 9 _12(x0)g- f +iy(x)g-f =0

We use the integration [' [DZ(f-f)/f?)dz=2f,/f
[9]. Finally, the Hirota's bilinear forms to Eq. (1) are got
that are given by Egs. (5) and (6).

2.2 Analytical soliton solutions to Eq. (1)
The starting hypotheses are that f(x,t) and g(x,t)

have the generalized power series expansions in the
forms

fxt) =1+ &2 fy (x,1) =
n=1

)
=1+, ) +e* f,(0t) +---
g(X,t) = nEl‘gngn(xlt) = (8)

= &g, (X, 1) + &30, (1) ++£3g5 (X, 1) +---

where ¢ is the formal expansion coefficient.

Substituting Eqgs (7) and (8) into the Hirota's bilinear
forms (5) and (6), and then using the balancing principle
gives a set of relations for f,,(x,t) and g,(xt) .
Finally the analytical solutions to Eq. (1) can be got by
solving those relations above.

In this work, we will focus on the 1-soliton. In this case,
g(x,t) takes the form [13]
g(x.t) = &g, (x.t) = sexp{[ay; () + )
+iagy (X)]x+ (b +ibyp)t+kyy +iky o}
where a;; and a;, are the real functions while by, b;,, ki;
and k,;, are the real constants.

Substituting Egs. (7) and (9) into the Hirota's bilinear
form (5) yields
b(x)

f,(x,1) =
20D 4b121a(x)
with f,, (x,)=0 (n=2,3,4,...).

Then, substituting Egs. (7), (9) and (10) into the Hirota's
bilinear form (6) yields

exp[2a,(X)x +2b it +2k;,]  (10)

11(X) + a3 (X)X — Ay + 2(X)by by, + () =0 (11)
845(%) + 812 (X)X —~ A(X)b, ~a(X)(bZ, ~b) +KZ(x) =0 (12)
%—%—2[an(x>+ah<x)x]+ -
20001340y + ity 2L =
Solving Egs. (11)-(13), one obtains

(9 = [TA000, - 2200y B /(I (19

2,200 = [Ta((BA ~b) - by~ (1)

1 ! p— —
p(x) = m[a(x)b (x) =2y (x)a(x)b(x) (16)
a'(x)b(x)]

Finally, without loss of generality, we take £=1, then
the analytical bright soliton solution to Eq. (1) is given by

g9(x.t) _
u(x, =" xh)
4bfa(x) exp{[ay1(X) +iay, (X)]X + (by1 +iby o)t + Ky +iky,}
4bZa(x) +b(x) exp[2a,, (X)X + 2by 1t + 2k, ]

17
where a;,(x) and a;,(x) are given by Egs. (14) and (15),
while the constraint condition for analytical solution to exist
is given by Eq. (16).

3. Ansatz method

In this section, we will use the ansatz method [14-20] to
get exact bright soliton solution to Eq. (1).
For bright soliton, the starting point is the hypothesis

u(x,t) = Asech[ay; (X)X +by 1t +ky, Jexp{i[a; . (X)X + by, + ki, I}
(18)
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Substituting this hypothesis into Eq. (1) yields

—[ag, (X)x+ay (X)]sech [y (X)X + byt + kg ]+
i< - tanh[ay 1 (X)X + byt + Kq4] +
+i[ag (X)X +ay, (X)]sech[ag 1 (X)X + byt + Ky ]
byjsech[ay, (X)X +by it +k;4] -
— 2b7sech *[ay ; (X)X + by it + ky 1] —
+a(x)s — 2iby ;b ,sechfag (X)X + byt + Kq4]- ¢ —
-tanh[ay (X)X + byt + Ky 4] -
—b;sech[ay, (X)X + byt + k]
— by ;sech[a; (X)X + byt + k4]
—iA(x)q-tanh[a (X)X + byt + ki 1+ ¢ —
+iby,sechag 1 (X)X + byt +Kq 4]

A2

7b1—,u(x)sech[a11(X)X +bygt+kgg]-
1

-tanh[ay; (X)X + byt + kg 4]+

+iy(x)sech[ag; (X)X + byt + ki ]+

+ A2b(x)sech ®[a;, (X)X + byt + ky;1-

K2 (x)sech[ay, (X)X + byt + ki1 ] = 0 (19)

Separating the real and imaginary parts, and then
using the homogeneous balance principle, one obtains
2

A
a(x) = 2lelb(x) (20)
7(X) = p(x) tanh[ay 1 (X)X + by 1t +Ky] (21)
alz(x)+jiz(X2)X—/1§X)b12— 22)
— ()b ~bZ) +kZ(x) =0
71 (X)X +ay4(X) +2by 10y 8(X) -
(23)

—bnz(x)—zbn%—p(x) ~0

where p(x) is an auxiliary function.
Solving Egs. (22) and (23), one obtains

2,200 = L300 ~b) - 200B, ~ KA (24)

20100 = [Iu120 - 211200 + 2 2D 1 o (29)

Finally, the analytical bright soliton solution to Eq.
(1) is obtained that is given by Eqg. (18), a;;(x) and
ay,(x) in which are given by Egs. (24) and (25), while

the constraint condition for analytical solution to exist
are given by Egs. (20) and (21).

4. Conclusion
This paper studied optical solitons, which are

modeled by nonlinear Schrodinger’s equation, in
presence of inter-modal dispersion, detuning and

attenuation which are all considered with spatially dependent
coefficients. Hirota’s bilinear method and ansatz approach
revealed bright 1-soliton solution which comes with
constraint conditions for its existence.
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